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Behavior of a Yawed Projectile Penetrating a Thin Plate 

Sikhanda Satapathy, Anthony Bedford and Stephan Bless 

1.0 Introduction 

In this paper we analyze the behavior of a yawed long rod projectile penetrating a 

plate. The plate is assumed to be thin enough that the effects of the axial forces exerted on 

the projectile during the initial impact and subsequent penetration can be neglected in 

comparison to the effects of the lateral force. As a result, the projectile is subjected to a 

lateral force which moves along its length at constant velocity as it engages the plate. The 

projectile is assumed to be sufficiently slender that it can be treated as a beam to model its 
dynamic behavior. 

We therefore model the projectile's interaction with the plate as a beam subjected to 

a transverse point load traveling at constant speed. An extensive review of research on 

wave propagation in beams is given by Al-Mousawi [1]. The traditional Euler-Bernoulli 

beam theory is inadequate for analyzing the response of a beam to a moving load because 

high-frequency disturbances propagate at infinite velocity due to the infinite shear rigidity 

arising from neglect of shearing deformation [2]. We use Timoshenko beam theory, which 

takes into account shear deformation and rotatory inertia [3]. It predicts finite wave speeds 

at all frequencies and agrees very well with the dispersion relation for flexural waves 

obtained using the three dimensional Pochhammer-Chree theory [4]. 

Waves in beams have been analyzed through steady-state solutions obtained by 

superposition of normal modes [5] and by transform methods [6]. We apply the Laplace 

transform to analyze the transient response of a free-free Timoshenko beam subjected to a 

traveling point force and invert the transformed solution using a numerical technique [7]. 

Duffy [8] has compared the inversion technique we use with exact solutions for test cases 
involving poles and branch points. 

2.0 Beam Equations 

The equations governing flexural motion of a Timoshenko beam are given by: 

d2¥ , u*Ady   ...1    . ,d2\ff EI—^ + kAG 
dx dx -V»- ° a) 
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and 

PA 
dt2 ■kAG '?1 

dx2 

dy/ 

dx 
= q(x,t) , (2) 

where E is Young's modulus, G is the shear modulus, pp is the density, I is the moment of 

inertia, A is the cross-sectional area, k' is the Timoshenko shear coefficient which depends 

on the shape of the cross section, y is the transverse displacement, \|/ is the rotation of the 

cross section due to moment alone, and q(x,t) is a distributed lateral force.   The shear 

force, Q, and moment, M, are given by: 

Q       dy dy, ,    Mr       dw    dw 
= -^--w = -^L-w   and    = /—^- = -2-. 

k'AG    dx dx, El        dx     dxx 
(3) 

The loading function q(x,t) is a Dirac delta function in the problem we consider. For a load 

moving with constant velocity V, q(x,t) can be written as: 

q(x,t) = Aj*S(x-Vt) (4) 

where A, is a constant to be determined from the loading conditions.    The governing 

equations can be nondimensionalized by introducing the change of variables: 

h = 
cbt x y 

x, = -,    and    yx = —, 
r r 

(5) 

where Cb = ^Ejpp is the bar wave speed and r = «Jl/A is the radius of gyration. 

Using Eqs. (4) and (5), Eqs. (1) and (2) reduce to the following nondimensional forms: 

d2w   £ 
dx2     7 dx, 

-¥ 
d2y/ 

dt. 
= 0 (6) 

and 



dt)     y 
d2y,     d\jf 

dx)     dx, 
= A8 

v      Sy (7) 

where 7 = E/(k'G)    and    J =    A> 

Introducing the Laplace transforms: 

00 

Y(x],p) = jy](x1>t)e-'"dt   and    Y(x„p)= Uix.^e^'dt 
n ■      J ' (8) 

Equations (6) and (7) transform to: 

¥" + I[r-¥]-jp
2¥ = 0 

(9) 

and 

-XjChp 

P2Y--[Y"-V"] = le   v   , 
(10) 

where primes denote derivatives with respect to x.    Boley and Chao [9] present the 

homogeneous solution of Equations (9) and (10) in the forms: 

Y= Cxe~x* + C2e~^' +C3e
x* + C4e

x> 
(11) 

and 

¥ = K-yp2 

V      ^1 
](c3e^'-qe-^)+ (K- yp 

v   K   j 

2\ 

- (C4e
x^-C2e-1^), (12) 

where: 



Xl2=Bp"2 p±N,]p2-a2 1/2 |v+ / 9 v — 1 
, 5=   Z±£, a = -,   and    N=L--.(13) 

V   2 7-1 7 + 1 

The constants C , C , C and C will be determined from the boundary conditions. We 

must add particular solutions to Eqs. (11) and (12) corresponding to the forcing function 

given in Eq. (10). Eliminating \|/ and its derivatives from Equations (9) and (10), we 

obtain: 

Y"" - Y"p2(y +1) + Yp2(yp2 + l) = A l + yp2 -y I V ) 
-CbPx\ 

(14) 

Assuming a particular solution of the form Y = C exp(-Dx]), the constants C and D can be 

determined by substitution into Equation (14). The resulting general solution for Y is: 

Y= Cxe~x*x + C2e'
x^ +C3e

XiXi + C4e
XlXl 

l + yp-y 
Cbp 

V V -CbP*\ 

frnV 

V ̂
)-P2(y+i){^f)+P2(yp2+i) 

(15) 

Similarly, eliminating Y and its derivatives from Equations (9) and (10), we obtain: 

CbP*i 

Y""-P
2
{Y + 1) 

x¥" + p2(yp2 + i) Y = -A (Cbp/V)e~ v (16) 

A general solution of this equation is: 

Hf = 
rK-yp2^ 
V      ^i      J 

(C3e
Vl -C,<TVl)- X2-yp 2\ 

+ 

\ "-2 ) 

AChP/V 

(C4e
Ml - C2e~x^) 

CbP*\ 

V 
c-f) -At+ffi) V(Y/+I) 

(17) 



3.0 Boundary Conditions 

The constants C,, C2, C3 and C4 in Equations (15) and (17) must be determined 

from the boundary conditions. For a free-free beam the end conditions are zero moment 

and zero shear force. From Eq. (3), the boundary conditions in terms of the dimensionless 
parameters of Eq. (5) are: 

Q 
k'AG 

= y'1-y/ = 0 atx = 0 andx = L (18) 

and 

Mr       ,    n 
-— = Xf/' = 0 atx = 0andx = L. (19) 

The Laplace transforms of these boundary conditions in terms of Eq. (8) are: 

(r-»p)|      =«pi      =0 (20) 

Using the boundary conditions (20) together with Eqs. (15) and (17), the coefficient C , 

C2, C3 and C4 can be expressed as: 

-1       -Zi        1          Zj 

1       z2       1       z2 

-z3   -zxzA   l/z3   zjzt 

z3     z2z4    l/z3   z2/zi_ 

• = — 

(Khp2){-F,ChPIV + F2) 
{Va]-yp2)cbpF2/v 

(\zJyp2){-FxCbplV + F2) 

w (zs/W-yp2)cbPF2/v 

_V      K-yp2. = e -(X,L/r) 

(21) 

F"~ rrn\4 

l + yp2-y\ Cbp 

CbP 
V v J 

'Cip* 
and 

/>2(y+i)Rf +P2(yp2+i) v v ) 



F2 = 
ACbp/V 

Cbp 
V J 

-P2{y + 1) 
V v J P2(yP

2 + i) 

4.0 Estimation of the Lateral Force 

The lateral force exerted on the projectile by the plate is estimated by determining 

the momentum flux of plate material displaced by the projectile. Consider a slender 

projectile of length L and radius of gyration r penetrating a thin plate of thickness h (Fig. 1) 

at velocity Vi. 0 and <() are the yaw angle of the projectile and the angle of obliquity of the 

target, respectively. From the geometry of the impact, the speed at which the force travels 

along the length of the beam is: 

V = V: 

( 
cos 6 + 

sind 
tan(j) 

= Vr 
sin (* + *) 

sin (*)   ' 
(22) 

Consider an element of the projectile of axial dimension dx passing through the target. If d 

is the span of target material intercepted by the projectile element dx, and the diameter of the 

projectile of circular cross-section (or the width of a projectile of rectangular cross section) 

is 2r, the momentum m, imparted to the projectile element dx in the transverse direction is 

given by: 

sin2 6 
m = 2ptrhvi dx ■ 

sin(6 + <j>) 
(23) 

The time interval during which this momentum is encountered is: 

At = 
dx 

~V 
(24) 

Thus the force applied to the projectile, which is same as the constant in Equation (3), is: 



A1=2p,rhVi 
2 sin2 6 

sin(j) (25) 

The constant A in equation (7) becomes: 

A=2 
(        V    2 

\PPJ 
(- 

( y V „;„2 

\cbJ 

sin 6 

sin(j> (26) 

Equation (26) takes into account only the momentum flux due to the inertia in estimating the 

lateral force. It is possible that the shearing force may play an important role in addition to 

the inertial forces under certain conditions. To investigate this, let us assume that the 

shearing force applied to the rod element dx varies linearly from Fs to zero during the time 

interval dts required to shear out the plate section. Then, the momentum, ms imparted to the 

rod element, dx is Fs*dts/2. From the geometry of Figure 1, an expression for n\ can be 
derived as: 

m. _<V* sin0 

2Vi sin2(6 + <t)) 
dx, (27) 

where c0 is the yield strength and hence, c0/2 is the shear strength of the plate material. 

The time interval during which this momentum is applied is same as the expression given in 

Eqn. (24). Thus from Eqns. (23) and (27) the ratio of the lateral forces arising out of 
inertia, A, and shear Als is: 

K_i 
Aj 

(h\ sin(j) 
(28) ptV

2)Krj^sind sin2(d + (j))^ 

For the case considered in the following section, the contribution of the shearing force is 

about 3% of the contribution due to the inertial force at an impact velocity of 2 km/s and 

hence can be ignored. However, at lower impact velocities or for thicker plates, shearing 
force gains importance and must be considered. 



Figure 1.  Geometry of impact. 

5.0 Numerical Solution 

To obtain time-dependent solutions for Y and ¥, first Eq. (21) must be solved for 

the coefficients as functions of the Laplace variable p and then inverse Laplace transform 

must be applied to Eqs. (15) and (17). Closed-form solutions have been obtained for the 

case of a semi-infinite beam [6]. In this case the coefficient matrix in Eq. (21) is two-by- 

two, the coefficients can easily be expressed in terms of p, and with some effort, the 

transformed solutions can be inverted analytically to obtain the time-dependent solution. 

Closed-form solutions have also been obtained for finite beams with simpler boundary 
conditions [7]. 

Here we obtain a solution by numerically inverting Eqs. (15) and (17), which also 

requires numerical solution of Eq. (21) to obtain the values of the coefficients. Several 

methods are available for numerical inversion of Laplace transforms. Duffy [8] has 

compared the three most popularly used methods by estimating the deviations of the 

numerical solutions from exact solutions for various cases involving poles, branch points 

or both. He tested the methods using a closed-form solution obtained by Boley and 

Chao [10]. He observed that Crump's [9] method, without any correction for 

discretization error, yields very good agreement with the exact solution. We used the 

IMSL routine DINLAP [11] to invert our transforms, which uses a significantly improved 

Crump's method developed by de Hoog et al [12].  This method is based on applying the 
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epsüon algorithm to the complex Fourier series obtained as a discrete approximation to the 

inverse integral. We obtained the solutions by specifying an acceptable relative error of 

l.E-4 or less. The IMSL routine DLSACG was employed to numerically solve Eq. (21). 

This routine solves the linear system of equations by LU decomposition followed by 
iterative refinement. 

We considered a sample case of a long rod tungsten projectile penetrating a thin 

plate made of steel. The elastic constants used for tungsten are E = 364 GPa, 

G = 140 GPa, and pp= 17000 kg/m3. The target material was steel with a density of 

7850 kg/m3. The projectile was assumed to travel at 2 km/s with a 10° yaw angle. For a 

target obliquity of 85°, the velocity of the traveling load is also found to be 2 km/s from 

Eq. (25). In general, the impact velocity and the speed of the traveling load will be 

different, as evident from Eq. (25), depending upon the yaw angle and the angle of 

obliquity. The h/r ratio is taken as unity. 

5.1 General Wave Structure and Effect of Aspect Ratio 

The first set of calculations are for the transverse deflection y, shear force Q, and 

moment M at dimensionless times t, = 10, 20, 30 and 46 for a rod with aspect ratio, 

L/r = 20 and circular cross section (k' = 1.1). There are two distinct modes of wave 

propagation in a Timoshenko Beam with wave speeds of CD = V(E/pp) and 

Cs = V(GkVpp). For tungsten, these speeds are 4627 m/s and 3010 m/s, respectively. 

The values t, = 20, 30 and 46 are the times at which the waves associated with CD and Cs 

and the loading point arrive at the end of the beam. Figure 2 shows the distribution of the 

shear force in nondimensional form versus distance along the length of the projectile, 

normalized with respect to the radius of gyration. At dimensionless time t =10, these 

waves should be at x, = 10 and at x, = 6.5 respectively. In Fig. 2 a wave front exists at 

Xj = 10 and the beam is undisturbed for Xj > 10. At the second wave front, x =6.5, 

there is a distinct jump in the shear force. In addition, there exists a jump at x =4.32 

which corresponds to the location of the force which travels at V = 2 km/s. The amplitude 

of the jump at the load can be determined analytically. At time t,, the traveling load is at 

x, = Vt/Cb. Integrating Eq. (7) between x, = Vt/Cb-e and X] = Vt/Cb+e, where £ is an 

arbitrarily small quantity, we obtain: 



32  Vt,/Cb+e 

Vt,/Cb-e 

*, 
dxj 

Vt,/Cb+e 

-w\ 
Vt,/Cb-e 

Vt,/Cb+e 

Vt,/C„-e 

Vt,/Cb+e 

= A    \8{x1-Vt,/Cb)dx1, 
Vt,/C„-e 

(29) 

The first integral in this equation is zero since y] is continuous. The second term is the 

jump in y„ which is also zero because the slope of the beam is continuous. The third term 

expresses the jump in \|/ at the load. From the definition of the delta function, the right- 

hand side is simply equal to J. Thus, from Eqs. (7) and (29) we obtain a jump condition 
for shear as follows: 

Q 
k'AG x,=Vt,/Cb 

ox. 
=-[MU„/c=-rA, (30) 

x,=Vt,/Cb 

where double brackets indicate a jump. For the above example, this jump is calculated to 

be 0.0038, which agrees with the value in Fig. 2. Given the nature of the numerical 

calculation, the agreement between the analytical value of the jump and the change in 

amplitude is excellent. The jump in shear force at the wave front associated with Cs has the 

same amplitude as the jump in shear force at the loading point since the wave originated at 

the loading point and propagates without dissipation. For t = 46, the reflected wave front 

associated with Cs is calculated to be at the location x =9.8. Figure 2 shows a jump in 

shear force at this location for t, = 46, but it has the opposite sign compared to the jump in 

shear force at the loading point, as is expected of a wave reflected from a shear-free 
boundary. 

10 
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-IS/ 

T1=10 

T1=20 

T1=30 
T1=46 

H i: 

20 

X/r 

X/r 

Figure 2.   Shear distribution for L/r = 20 at different times. 

Figure 3 shows the moment distribution in a beam with L/r = 20 for different 

times. The arrival time for the disturbance corresponds to the wave speed CD. At the other 

wave fronts, associated with Cs and the point of load, the moment distribution shows 

peaks. But the maximum moment is not generally associated with these peaks; it occurs at 

the point where the shear force is zero. The maxima in shear force and moment do not 

occur simultaneously. In addition, there is no jump in moment anywhere, which is 

consistent with the jump condition associated with Eq. (10). The maximum moment in the 

beam is observed to occur at the time when the load is about to leave the beam and occurs at 

x, ~ 15.5. Figure 4 shows the deflection of the L/r = 20 beam at different times. 

We also studied the effect of varying the ratio L/r on the wave propagation 

behavior. Figures 5, 6 and 7 show the distributions of shear force, moment and deflection 

for beams for L/r = 10, 20 and 30, respectively, at the time the load is about to exit the 

beams, k was assumed to be 1.1, corresponding to a circular cross section. A larger L/r 

indicates either a larger length for the same stiffness or a smaller stiffness for the same 

length. The smaller the stiffness or larger the length, the larger is the maximum moment 

developed. The jumps in shear force are independent of L/r, as is expected from Eq. (30). 

However the maximum moment increases with L/r. This suggests that as the length of a 

projectile is increased, for a given load scenario, a point will be reached when failure 
occurs, and it will occur first at the uprange end of the projectile. 

11 
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Figure 3.  Moment distribution for L/r = 20 at different times. 
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Figure 4.   Deflection for L/r = 20 beam at different times. 
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Figure 5.  Shear distribution when the load exits the beam. 
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Figure 6.  Moment distribution when the load exits the beam. 
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Figure 7.  Deflection when the load exits the beam. 

Finally, we checked to determine whether the beam material yielded in any of the 

cases noted above by employing the von Mises yield criteria. The yield criteria written in 

terms of the dimensionless quantities used above is: 

(Mr\ 
KEIJ 

*E\ + 3< ( Q 
k'AG. 

'k'Gl 

1/2 

= <?o . (31) 

where aQ is the yield stress. From all our results, the maximum nondimensional shear 

experienced is below 0.005 (occurs for a L/r = 20 beam at t = 20 and x =13), and the 

nondimensional moment at this point is about 0.0002. Inserting these values into Eq. (31) 

gives an effective stress value of 1.35 GPa, which is less than the yield stress of tungsten 

(about 1.5 GPa). Similarly, the maximum value of the nondimensional moment is about 

0.003 (occurs for L/r = 20 at t] = 46 and x-15). The shear stress at this point is zero. 

Thus the maximum stress at this cross-section is 1.1 GPa, which is also below the yield 
stress value. 

14 



5.2 Effect of the Cross-Sectional Area 

We compared the dynamic behavior of a projectile with circular cross-sectional area 

and a projectile with square cross sectional area, otherwise identical. In the following, we 

denote the quantities for square and circular cross-sectional area by subscripts "s" and "c" 

respectively. For the same cross-sectional area, the radii of gyration and the moments of 
inertia are related by: 

H = L IE.      L = £. 
rc     2\3'       l~ 12' (32) 

Thus from Eqs. (16) and (32) the nondimensional forcing functions for both the cases are 
related by: 

Ac     rc     2"\/3* (33) 

Since the beam equations are linear and we neglected the axial impulse, for a given beam 

the nondimensional quantity y„ moment M, and shear force Q, should scale with the 

forcing function A, i.e.: 

y^=(M!iEll = iQ/}^AGl = ÄL 

ylc     {Mr/EI)c     (Q/k'AG)c     \ (34) 

However, these quantities can not be compared in this fashion for beams with different 

cross section since the coefficients in the governing equation (e.g., Eq. (14)) will be 

different due to the fact that the numerical value of y = E/k'G changes with shape of the 

cross section. Changing k' will not only scale the jump in shear, as evident from Eq. (30), 

the wave speed of the second mode, Cs, will also scale with Vk. On the other hand, if we 

ignore the effect of k and estimate only the effect of change in cross-sectional radius of 

gyration on the wave structures, from Eqs. (9), (32), (33) and (34) the following ratios of 

displacement, moment and shear for square and circular rods are obtained: 

15 



Acrc 

K_ 

~12~' 12'    Qc   K A 

1.12 1 \K     n ,.-      ,„_. 
  =0.637.     (35) 
0.9   213 

The nondimensional shear, moment and displacements are plotted in Figures 7, 8 and 9, 

respectively, for a square (k' = 0.9) and a circular rod (k' = 1.1) with L/r = 20 and 

identical material properties, at the time when the load exits the beams. The displacement 

scales almost identically to the ratio in Eq. (35), hence the effect of k' is minimal. Please 

note that necessary scaling constants have to be multiplied before comparing Eq. (35) with 

the nondimensional values in the figures. The shear jump scaled and shifted in accordance 

with the discussion above. The maximum value of the moment scaled almost in agreement 

with Eq. (35). Thus the deflection, maximum moment and maximum shear in the square 

rod are about 26%, 26% and 64% of those in the circular rod respectively. Consequently, 

square rods should fare better that circular rods as far as the bending vibration is 

concerned. Other, suffer shapes should follow the same trend. 

< 
0.0030 

0.0020 - 

0.0010 

0.0000 

-0.0010 - 

-0.0020 

-0.0030 

Figure 8.   Shear distribution for square and circular beam. 
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Figure 9.   Moment distribution for square and circular beam. 
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Figure 10.  Deflection of square and circular beams when load exits the beam. 
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6.0 Conclusions 

We have analyzed the transient response of a free-free Timoshenko beam subjected 

to a moving point load in order to understand the behavior of a yawed long rod projectile 

penetrating a thin oblique target. The Laplace transform technique with a numerical 

inversion method resulted in a well-resolved wave propagation solution which agreed well 

with theoretical wave speeds and jump conditions. We found that the maximum bending 

moment experienced increases with the projectile aspect ratio. Thus, in planning 

experiments or analyses, it is important to use projectiles that have appropriate L/r ratios. 

Moreover, the most likely failure location of a projectile is near the rear end, as failure is 

most likely to occur just after exit of the load. The bending stresses can be significantly 

reduced by changing the cross section; in general suffer sections result in smaller stresses. 

This model can be used as a design tool to optimize the L/r ratio of the projectile for a given 

mass to ensure integrity of the projectile at high impact velocities. The elastic solutions 

obtained in the example were found to be adequate since the material does not yield at any 

time. For other angles of yaw and obliquity the maximum impact velocity of the projectile 

can be determined so that yielding does not take place anywhere in the projectile. For 

penetration of thicker plates, a solution can be constructed from the point load solution 

obtained in this paper by superposition principle as long as the axial impulse at impact is 

neglected. A plastic analysis would need to be undertaken if the behavior of the projectile 

must be determined under more severe loading conditions. Finally, an interesting 

extension to the present analysis would be to investigate the situation where the transverse 

load travels supersonically with respect to Cs or Q>. 
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